Momotik.ru

Народный проект

Метки: Классическая теория кратко, классическая теория ланжевена, притяжения орфографический разбор, сила притяжения я люблю тебя.

В рамках классической механики гравитационное взаимодействие описывается законом всемирного тяготения. Этот закон был открыт Ньютоном в 1666 г.. Он гласит, что сила гравитационного притяжения между двумя материальными точками массы и , разделёнными расстоянием , пропорциональна обеим массам и обратно пропорциональна квадрату расстояния между ними — то есть:

Здесь  — гравитационная постоянная, равная м³/(кг с²).

Содержание

Свойства ньютоновского тяготения

См. также Гравитация
В общем случае, когда плотность вещества ρ распределена произвольно, φ удовлетворяет уравнению Пуассона:
Решение этого уравнения записывается в виде:
где r — расстояние между элементом объёма dV и точкой, в которой определяется потенциал φ, С — произвольная постоянная.
  • Сила притяжения, действующая в гравитационном поле на материальную точку с массой , связана с потенциалом формулой:
  • Сферически симметричное тело создаёт за своими пределами такое же поле, как материальная точка той же массы, расположенная в центре тела.
  • Траектория материальной точки в гравитационном поле, создаваемом много большей по массе материальной точкой, подчиняется законам Кеплера. В частности, планеты и кометы в Солнечной системе движутся по эллипсам или гиперболам. Влияние других планет, искажающее эту картину, можно учесть с помощью теории возмущений.

Исторический очерк

Закон тяготения Ньютона

Сама идея всеобщей силы тяготения неоднократно высказывалась и до Ньютона. Ранее о ней размышляли Эпикур, Гассенди, Кеплер, Борелли, Декарт, Роберваль, Гюйгенс и другие.[1] Кеплер полагал, что тяготение обратно пропорционально расстоянию до Солнца и распространяется только в плоскости эклиптики; Декарт считал его результатом вихрей в эфире.[2] Были, впрочем, догадки с правильной зависимостью от расстояния; Ньютон в письме к Галлею упоминает как своих предшественников Буллиальда, Рена и Гука[3]. Но до Ньютона никто не сумел ясно и математически доказательно связать закон тяготения (силу, обратно пропорциональную квадрату расстояния) и законы движения планет (законы Кеплера).

В своём основном труде «Математические начала натуральной философии» (1687) Исаак Ньютон вывел закон тяготения, основываясь на эмпирических законах Кеплера, известных к тому времени. Он показал, что:

  • наблюдаемые движения планет свидетельствуют о наличии центральной силы;
  • обратно, центральная сила притяжения приводит к эллиптическим (или гиперболическим) орбитам.

Теория Ньютона, в отличие от гипотез предшественников, имела ряд существенных отличий. Ньютон опубликовал не просто предполагаемую формулу закона всемирного тяготения, но фактически предложил целостную математическую модель:

В совокупности эта триада достаточна для полного исследования самых сложных движений небесных тел, тем самым создавая основы небесной механики. До Эйнштейна никаких принципиальных поправок к указанной модели не понадобилось, хотя математический аппарат оказалось необходимым значительно развить.

Отметим, что теория тяготения Ньютона уже не была, строго говоря, гелиоцентрической. Уже в задаче двух тел планета вращается не вокруг Солнца, а вокруг общего центра тяжести, так как не только Солнце притягивает планету, но и планета притягивает Солнце. Наконец, выяснилась необходимость учесть влияние планет друг на друга.

Со временем оказалось, что закон всемирного тяготения позволяет с огромной точностью объяснить и предсказать движения небесных тел, и он стал рассматриваться как фундаментальный. В то же время ньютоновская теория содержала ряд трудностей. Главная из них — необъяснимое дальнодействие: сила притяжения передавалась непонятно как через совершенно пустое пространство, причём бесконечно быстро. По существу ньютоновская модель была чисто математической, без какого-либо физического содержания. Кроме того, если Вселенная, как тогда предполагали, евклидова и бесконечна, и при этом средняя плотность вещества в ней ненулевая, то возникает гравитационный парадокс. В конце XIX века обнаружилась ещё одна проблема: расхождение теоретического и наблюдаемого смещения перигелия Меркурия.

Дальнейшее развитие

Общая теория относительности

На протяжении более двухсот лет после Ньютона физики предлагали различные пути усовершенствования ньютоновской теории тяготения. Эти усилия увенчались успехом в 1915 году, с созданием общей теории относительности Эйнштейна, в которой все указанные трудности были преодолены. Теория Ньютона, в полном согласии с принципом соответствия, оказалась приближением более общей теории, применимым при выполнении двух условий:

  1. Гравитационный потенциал в исследуемой системе не слишком велик: .
  2. Скорости движения в этой системе незначительны по сравнению со скоростью света: .

Квантовая гравитация

Однако и общая теория относительности не является окончательной теорией гравитации, так как неудовлетворительно описывает гравитационные процессы в квантовых масштабах (на расстояниях порядка планковского, около 1,6·10−35 м). Построение непротиворечивой квантовой теории гравитации — одна из важнейших нерешённых задач современной физики.

См. также

Примечания

  1. Математика. Утрата определённости. — М.: Мир, 1984. — С. 66.
  2. Спасский Б. И. История физики. — Т. 1. — С. 140-141.
  3. Ход их рассуждений легко восстановить. Как показал Гюйгенс, при круговом движении центростремительная сила (пропорциональна) , где — скорость тела, — радиус орбиты. Но , где — период обращения, то есть . Согласно 3-му закону Кеплера, , поэтому , откуда окончательно имеем: .
п·о·р
Теории гравитации
Стандартные теории гравитации Альтернативные теории гравитации Квантовые теории гравитации Единые теории поля
Классическая физика
  • Теория тяготения Ньютона

Релятивистская физика

Принципы

Классические

Релятивистские

Многомерные

Струнные

Прочие

Tags: Классическая теория кратко, классическая теория ланжевена, притяжения орфографический разбор, сила притяжения я люблю тебя.