Построения с помощью циркуля и линейки — раздел евклидовой геометрии, известный с античных времён. В задачах на построение циркуль и линейка считаются идеальными инструментами, в частности:
- Линейка не имеет делений и имеет только одну сторону бесконечной длины.
- Циркуль может иметь сколь угодно большой или сколь угодно малый раствор.
Пример
Разбиение отрезка пополам
Задача на бисекцию. С помощью циркуля и линейки разбить данный отрезок AB на две равные части. Одно из решений показано на рисунке:
- Циркулем проводим окружности с центром в точках A и B радиусом AB.
- Находим точки пересечения P и Q двух построенных окружностей (дуг).
- По линейке проводим отрезок или линию, проходящую через точки P и Q.
- Находим искомую середину отрезка AB - точку пересечения AB и PQ.
Формальное определение
В задачах на построение рассматриваются множество всех точек плоскости, множество всех прямых плоскости и множество всех окружностей плоскости, над которыми допускаются следующие операции:
- Выделить точку из множества всех точек:
- произвольную точку
- произвольную точку на заданной прямой
- произвольную точку на заданной окружности
- точку пересечения двух заданных прямых
- точки пересечения/касания заданной прямой и заданной окружности
- точки пересечения/касания двух заданных окружностей
- «С помощью линейки» выделить прямую из множества всех прямых:
- произвольную прямую
- произвольную прямую, проходящую через заданную точку
- прямую, проходящую через две заданных точки
- «С помощью циркуля» выделить окружность из множества всех окружностей:
- произвольную окружность
- произвольную окружность с центром в заданной точке
- произвольную окружность с радиусом, равным расстоянию между двумя заданными точками
- окружность с центром в заданной точке и с радиусом, равным расстоянию между двумя заданными точками
В условиях задачи задается некоторое множество точек. Требуется с помощью конечного количества операций из числа перечисленных выше допустимых операций построить другое множество точек, находящееся в заданном соотношении с исходным множеством.
Решение задачи на построение содержит в себе три существенные части:
- Описание способа построения заданного множества.
- Доказательство того, что множество, построенное описанным способом, действительно находится в заданном соотношении с исходным множеством. Обычно доказательство построения производится как обычное доказательство теоремы, опирающееся на аксиомы и другие доказанные теоремы.
- Анализ описанного способа построения на предмет его применимости к разным вариантам начальных условий, а также на предмет единственности или неединственности решения, получаемого описанным способом.
Известные задачи
- Задача Аполлония о построении окружности, касающейся трех заданных окружностей. Если ни одна из заданных окружностей не лежит внутри другой, то эта задача имеет 8 существенно различных решений.
- Задача Брахмагупты о построении вписанного четырехугольника по четырем его сторонам.
Построение правильных многоугольников
Построение правильного пятиугольника
Античным геометрам были известны способы построения правильных n-угольников для , , и .
В 1796 году Гаусс показал возможность построения правильных n-угольников при , где — различные простые числа Ферма. В 1836 году Ванцель доказал, что других правильных многоугольников, которые можно построить циркулем и линейкой, не существует.
Неразрешимые задачи
Следующие три задачи на построение были поставлены ещё в античности:
Только в XIX веке было доказано, что все три задачи неразрешимы при использовании только циркуля и линейки. Вопрос возможности построения полностью решён алгебраическими методами, основанными на теории Галуа.
- Другая известная неразрешимая с помощью циркуля и линейки задача — построение треугольника по трём заданным длинам биссектрис.[1] Причём эта задача остаётся неразрешимой даже при наличии трисектора.[2]
Возможные и невозможные построения
Все построения являются не чем иным, как решениями какого-либо уравнения, причем коэффициенты этого уравнения связаны с длинами заданных отрезков. Поэтому удобно говорить о построении числа — графического решения уравнения определенного типа. В рамках вышеописанных требований возможны следующие построения:
Иначе говоря, возможно построить лишь числа равные арифметическим выражениям с использованием квадратного корня из исходных чисел (длин отрезков). Например,
- Если задан только отрезок длины , то невозможно представить в таком виде (отсюда невозможность удвоения куба).
- Возможность построить правильный 17-угольник следует из выражения на косинус угла:
Вариации и обобщения
- Построения с помощью одного циркуля. По теореме Мора — Маскерони с помощью одного циркуля можно построить любую фигуру, которую можно построить циркулем и линейкой. При этом прямая считается построенной, если на ней заданы две точки.
- Построения с помощью одной линейки. Легко заметить, что с помощью одной линейки можно проводить только проективно-инвариантные построения. В частности, невозможно даже разбить отрезок на две равные части, либо найти центр нарисованной окружности. Но при наличии на плоскости заранее проведённой окружности с отмеченным центром с помощью линейки можно провести те же построения, что и циркулем и линейкой (теорема Понселе — Штейнера (англ.)), 1833.
- Если на линейке есть две засечки, то построения с помощью неё эквивалентны построениям с помощью циркуля и линейки (важный шаг в доказательстве этого сделал Наполеон).
- Построения с помощью инструментов с ограниченными возможностями. В задачах такого рода инструменты (в противоположность классической постановке задачи) считаются не идеальными, а ограниченными: прямую через две точки с помощью линейки можно провести только при условии, что расстояние между этими точками не превышает некоторой величины; радиус окружностей, проводимых с помощью циркуля, может быть ограничен сверху, снизу или одновременно и сверху, и снизу.
- Построения с помощью плоского оригами. см. правила Худзита
Интересные факты
- Узор на флаге Ирана описывается как построение с помощью циркуля и линейки[3].
См. также
Примечания
- Кто и когда доказал невозможность построения треугольника по трем биссектрисам?. Дистанционный консультационный пункт по математике МЦНМО.
- Можно ли построить треугольник по трем биссектрисам, если кроме циркуля и линейки разрешается использовать трисектор. Дистанционный консультационный пункт по математике МЦНМО.
- Стандарт флага Ирана (перс.)(недоступная ссылка)
Литература
- А. Адлер Теория геометрических построений / Перевод с немецкого Г. М. Фихтенгольца. — Издание третье. — Л.: Учпедгиз, 1940. — 232 с.
- И. И. Александров Сборник геометрических задач на построение. — Издание восемнадцатое. — М.: Учпедгиз, 1950. — 176 с.
- Б. И. Аргунов, М. Б. Балк Геометрические построения на плоскости. Пособие для студентов педагогических институтов. — Издание второе. — М.: Учпедгиз, 1957. — 268 с.
- А. М. Воронец Геометрия циркуля. — М.-Л.: ОНТИ, 1934. — 40 с. — (Популярная библиотека по математике под общей редакцией Л. А. Люстерника).
- В. А. Гейлер Неразрешимые задачи на построение // СОЖ. — 1999. — № 12. — С. 115—118.
- В. А. Кириченко Построения циркулем и линейкой и теория Галуа // Летняя школа «Современная математика». — Дубна, 2005.
- Ю. И. Манин Книга IV. Геометрия // Энциклопедия элементарной математики. — М.: Физматгиз, 1963. — 568 с.
- Ю. Петерсен Методы и теории решения геометрических задач на построение. — М.: Типография Э. Лисснера и Ю. Романа, 1892. — 114 с.
- В. В. Прасолов Три классические задачи на построение. Удвоение куба, трисекция угла, квадратура круга. — М.: Наука, 1992. — 80 с. — (Популярные лекции по математике).
- Я. Штейнер Геометрические построения, выполняемые с помощью прямой линии и неподвижного круга. — М.: Учпедгиз, 1939. — 80 с.
- Факультативный курс по математике. 7-9 / Сост. И. Л. Никольская. — М.: Просвещение, 1991. — С. 80. — 383 с. — ISBN 5-09-001287-3