Фотоэффе́кт — это испускание электронов веществом под действием света (и, вообще говоря, любого электромагнитного излучения). В конденсированных веществах (твёрдых и жидких) выделяют внешний и внутренний фотоэффект.
Законы фотоэффекта:
Формулировка 1-го закона фотоэффекта: количество электронов, вырываемых светом с поверхности металла за единицу времени на данной частоте, прямо пропорционально световому потоку, освещающему металл.
Согласно 2-му закону фотоэффекта, максимальная кинетическая энергия вырываемых светом электронов линейно возрастает с частотой света и не зависит от его интенсивности.
3-й закон фотоэффекта: для каждого вещества существует красная граница фотоэффекта, то есть минимальная частота света (или максимальная длина волны λ0), при которой ещё возможен фотоэффект, и если , то фотоэффект уже не происходит.
Теоретическое объяснение этих законов было дано в 1905 году Эйнштейном. Согласно ему, электромагнитное излучение представляет собой поток отдельных квантов (фотонов) с энергией hν каждый, где h — постоянная Планка. При фотоэффекте часть падающего электромагнитного излучения от поверхности металла отражается, а часть проникает внутрь поверхностного слоя металла и там поглощается. Поглотив фотон, электрон получает от него энергию и, совершая работу выхода Aout, покидает металл: где — кинетическая энергия, которую имеет электрон при вылете из металла.
Содержание |
В 1839 году Александр Беккерель наблюдал[1] явление фотоэффекта в электролите.
В 1873 году Уиллоуби Смит обнаружил, что селен является фотопроводящим. Затем эффект изучался в 1887 году Генрихом Герцем. При работе с открытым резонатором он заметил, что если посветить ультрафиолетом на цинковые разрядники, то прохождение искры заметно облегчается.
Исследования фотоэффекта показали, что, вопреки классической электродинамике, энергия вылетающего электрона всегда строго связана с частотой падающего излучения и практически не зависит от интенсивности облучения.
В 1888—1890 годах фотоэффект систематически изучал русский физик Александр Столетов. Им были сделаны несколько важных открытий в этой области, в том числе выведен первый закон внешнего фотоэффекта.
Фотоэффект был объяснён в 1905 году Альбертом Эйнштейном (за что в 1921 году он, благодаря номинации шведского физика Карла Вильгельма Озеена, получил Нобелевскую премию) на основе гипотезы Макса Планка о квантовой природе света. В работе Эйнштейна содержалась важная новая гипотеза — если Планк в 1900 году предположил, что свет излучается только квантованными порциями, то Эйнштейн уже считал, что свет и существует только в виде квантованных порций. Из закона сохранения энергии, при представлении света в виде частиц (фотонов), следует формула Эйнштейна для фотоэффекта:
где — т. н. работа выхода (минимальная энергия, необходимая для удаления электрона из вещества), — кинетическая энергия вылетающего электрона, — частота падающего фотона с энергией , h — постоянная Планка. Из этой формулы следует существование красной границы фотоэффекта, то есть существование наименьшей частоты, ниже которой энергии фотона уже недостаточно для того, чтобы «выбить» электрон из металла. Суть формулы заключается в том, что энергия фотона расходуется на ионизацию атома вещества и на работу, необходимую для «вырывания» электрона, а остаток переходит в кинетическую энергию электрона.
Исследования фотоэффекта были одними из самых первых квантовомеханических исследований.
Внешним фотоэффектом (фотоэлектронной эмиссией) называется испускание электронов веществом под действием электромагнитных излучений. Электроны, вылетающие из вещества при внешнем фотоэффекте, называются фотоэлектронами, а электрический ток, образуемый ими при упорядоченном движении во внешнем электрическом поле, называется фототоком.
Фотокатод — электрод вакуумного электронного прибора, непосредственно подвергающийся воздействию электромагнитных излучений и эмитирующий электроны под действием этого излучения.
Зависимость спектральной чувствительности от частоты или длины волны электромагнитного излучения называют спектральной характеристикой фотокатода.
Основные закономерности внешнего фотоэффекта для металлов хорошо описываются теорией Фаулера[2]. Согласно ей, после поглощения в металле фотона, его энергия переходит электронам проводимости, в результате чего электронный газ в металле состоит из смеси газов с нормальным распределением Ферми-Дирака и возбужденным (сдвинутым на hν) распределением по энергиям. Плотность фототока определяется формулой Фаулера:
где , , — постоянные коэффициенты, зависящие от свойств облучаемого металла.
Важной количественной характеристикой фотоэффекта является квантовый выход Y — число эмитированных электронов в расчёте на один фотон, падающий на поверхность тела. Величина Y определяется свойствами вещества, состоянием его поверхности и энергией фотонов. Квантовый выход фотоэффекта из металлов в видимой и ближней УФ-областях Y < 0,001 электрон/фотон. Это связано прежде всего с малой глубиной выхода фотоэлектронов, которая значительно меньше глубины поглощения света в металле. Большинство фотоэлектронов рассеивает свою энергию до подхода к поверхности и теряет возможность выйти в вакуум. При энергии фотонов вблизи порога фотоэффекта большинство фотоэлектронов возбуждается ниже уровня вакуума и не даёт вклада в фотоэмиссионный ток. Кроме того, коэффициент отражения в видимой и ближней УФ-областях велик и лишь малая часть излучения поглощается в металле. Эти ограничения частично снимаются в дальней УФ-области спектра, где Y достигает величины 0,01 электрон/фотон при энергии фотонов E > 10 эВ.
Внутренним фотоэффектом называется перераспределение электронов по энергетическим состояниям в твердых и жидких полупроводниках и диэлектриках, происходящее под действием излучений. Он проявляется в изменении концентрации носителей зарядов в среде и приводит к возникновению фотопроводимости или вентильного фотоэффекта.
Фотопроводимостью называется увеличение электрической проводимости вещества под действием излучения.
Вентильный фотоэффект или фотоэффект в запирающем слое — явление, при котором фотоэлектроны покидают пределы тела, переходя через поверхность раздела в другое твёрдое тело (полупроводник) или жидкость (электролит).
Фотовольтаический эффект — возникновение электродвижущей силы под действием электромагнитного излучения[3].
При поглощении гамма-кванта ядро получает избыток энергии без изменения своего нуклонного состава, а ядро с избытком энергии является составным ядром. Как и другие ядерные реакции, поглощение ядром гамма-кванта возможно только при выполнении необходимых энергетических и спиновых соотношений. Если переданная ядру энергия превосходит энергию связи нуклона в ядре, то распад образовавшегося составного ядра происходит чаще всего с испусканием нуклонов, в основном нейтронов. Такой распад ведёт к ядерным реакциям и , которые и называются фотоядерными, а явление испускания нуклонов (нейтронов и протонов) в этих реакциях — ядерным фотоэффектом[4].
Как показали эксперименты в национальном метрологическом институте Германии Physikalisch-Technische Bundesanstalt, результаты которых опубликованы 24 апреля 2009 года в Physical Review Letters[5], в мягком рентгеновском диапазоне длин волн при плотности мощности на уровне нескольких петаватт (1015 Вт) на квадратный сантиметр общепринятая теоретическая модель фотоэффекта может оказаться неверной.
Сравнительные количественные исследования различных материалов показали, что глубина взаимодействия между излучением и веществом существенно зависит от структуры атомов этого вещества и корреляции между внутренними электронными оболочками. В случае c ксеноном, который использовался в экспериментах, воздействие пакета фотонов в коротком импульсе приводит, по всей видимости, к одновременной эмиссии множества электронов с внутренних оболочек[6].
Основные разделы |
|
||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Прикладная физика | Физика плазмы • Физика атмосферы • Лазерная физика • Физика ускорителей | ||||||||||||||||||||||||
Связанные науки | Агрофизика • Физическая химия • Математическая физика • Космология • Астрофизика • Геофизика • Биофизика • Метрология • Материаловедение | ||||||||||||||||||||||||
См. также | Кибернетика • Синергетика • Нелинейная динамика | ||||||||||||||||||||||||
Портал «Физика» |