Метки: Геотермальная энергетика реферат скачать, геотермальная энергетика в крыму, геотермальная энергетика принцип получения энергии, геотермальная энергетика геоэс.
Геотермальная энергетика — направление энергетики, основанное на производстве электрической и тепловой энергии за счёт тепловой энергии, содержащейся в недрах земли, на геотермальных станциях. Обычно относится к альтернативным источникам энергии, использующим возобновляемые энергетические ресурсы.
В вулканических районах циркулирующая вода перегревается выше температур кипения на относительно небольших глубинах и по трещинам поднимается к поверхности, иногда проявляя себя в виде гейзеров. Доступ к подземным тёплым водам возможен при помощи глубинного бурения скважин. Более чем такие паротермы распространены сухие высокотемпературные породы, энергия которых доступна при помощи закачки и последующего отбора из них перегретой воды. Высокие горизонты пород с температурой менее 100 °C распространены и на множестве геологически малоактивных территорий, потому наиболее перспективным считается использование геотерм в качестве источника тепла.
Хозяйственное применение геотермальных источников распространено в Исландии и Новой Зеландии, Италии и Франции, Литве, Мексике, Никарагуа, Коста-Рике, Филиппинах, Индонезии, Китае, Японии, Кении.
Содержание |
Перспективными источниками перегретых вод обладают множественные вулканические зоны планеты в том числе Камчатка, Курильские, Японские и Филиппинские острова, обширные территории Кордильер и Анд.
Россия
На 2006 г. в России разведано 56 месторождений термальных вод с дебитом, превышающим 300 тыс. м³/сутки. На 20 месторождениях ведется промышленная эксплуатация, среди них: Паратунское (Камчатка), Казьминское и Черкесское (Карачаево-Черкесия и Ставропольский край), Кизлярское и Махачкалинское (Дагестан), Мостовское и Вознесенское (Краснодарский край).
Главным достоинством геотермальной энергии является ее практическая неиссякаемость и полная независимость от условий окружающей среды, времени суток и года.
Существуют следующие принципиальные возможности использования тепла земных глубин. Воду или смесь воды и пара в зависимости от их температуры можно направлять для горячего водоснабжения и теплоснабжения, для выработки электроэнергии либо одновременно для всех этих целей. Высокотемпературное тепло околовулканического района и сухих горных пород предпочтительно использовать для выработки электроэнергии и теплоснабжения. От того, какой источник геотермальной энергии используется, зависит устройство станции.
Если в данном регионе имеются источники подземных термальных вод, то целесообразно их использовать для теплоснабжения и горячего водоснабжения. Например, по имеющимся даннымЗападной Сибири имеется подземное море площадью 3 млн м2 с температурой воды 70—90 °С. Большие запасы подземных термальных вод находятся в Дагестане, Северной Осетии, Чечне, Ингушетии, Кабардино-Балкарии, Закавказье, Ставропольском и Краснодарском краях, на Камчатке и в ряде других районов России, также в Казахстане.
, вГлавная из проблем, которые возникают при использовании подземных термальных вод, заключается в необходимости обратной закачки отработанной воды в подземный водоносный горизонт. В термальных водах содержится большое количество солей различных токсичных металлов (например, бора, свинца, цинка, кадмия, мышьяка) и химических соединений (аммиака, фенолов), что исключает сброс этих вод в природные водные системы, расположенные на поверхности.
Наибольший интерес представляют высокотемпературные термальные воды или выходы пара, которые можно использовать для производства электроэнергии и теплоснабжения.
Потенциальная суммарная рабочая мощность геотермальных электростанций в мире уступает большинству станций на иных возобновимых источниках энергии. Однако направление получило развитие в силу высокой энергетической плотности в отдельных заселённых географических районах, в которых отсутствуют или относительно дороги горючие полезные ископаемые, а также благодаря правительственным программам.
Установленная мощность геотермальных электростанций в мире на начало 1990-х составляла около 5 тысяч МВт, на начало 2000-х — около 6 тысяч МВт. В конце 2008 года суммарная мощность геотермальных электростанций во всём мире выросла до 10,5 тысяч МВт[1].
Страна | Мощность, МВт 2007[2] |
Мощность, МВт 2010[3] |
Доля от общей выработки электроэнергии, 2010 |
---|---|---|---|
США | 2687 | 3086 | 0.3% |
Филиппины | 1969.7 | 1904 | 27% |
Индонезия | 992 | 1197 | 3.7% |
Мексика | 953 | 958 | 3% |
Италия | 810.5 | 843 | |
Новая Зеландия | 471.6 | 628 | 10% |
Исландия | 421.2 | 575 | 30% |
Япония | 535.2 | 536 | 0.1% |
Сальвадор | 204.2 | 204 | 14% |
Кения | 128.8 | 167 | 11.2% |
Коста-Рика | 162.5 | 166 | 14% |
Никарагуа | 87.4 | 88 | 10% |
Россия | 79 | 82 | |
Турция | 38 | 82 | |
Папуа-Новая Гвинея | 56 | 56 | |
Гватемала | 53 | 52 | |
Португалия | 23 | 29 | |
КНР | 27.8 | 24 | |
Франция | 14.7 | 16 | |
Эфиопия | 7.3 | 7.3 | |
Германия | 8.4 | 6.6 | |
Австрия | 1.1 | 1.4 | |
Австралия | 0.2 | 1.1 | |
Таиланд | 0.3 | 0.3 | |
Всего | 9,731.9 | 10,709.7 |
Крупнейшим производителем геотермальной электроэнергии являются США, которые в 2005 году произвели около 16 млрд кВт·ч возобновляемой электроэнергии. В 2009 году суммарные мощности 77 геотермальных электростанций в США составляли 3086 МВт[4]. До 2013 года планируется строительство более 4400 МВт.
Наиболее мощная и известная группа геотермальных электростанций находится на границе округов Сонома и Лейк в 116 км к северу от Сан-Франциско. Она носит название «Гейзерс»(«Geysers») и состоит из 22 геотермальных электростанций с общей установленной мощностью 1517 МВт[5]. «На «Гейзерс» сейчас приходится одна четвертая часть всей произведенной в Калифорнии альтернативной [не-гидро] энергии»[6]. К другим основным промышленным зонам относятся: северная часть Солёного моря в центральной Калифорнии (570 МВт установленной мощности)и геотермальные электростанции в Неваде, чья установленная мощность достигает 235 МВт.
Важно отметить тот факт, что американские компании являются мировыми лидерами в этом секторе, не смотря то, что геотермальная энергетика начала активно развиваться в стране сравнительно недавно. По данным Министерства Торговли, геотермальная энергия является одним из немногих возобновляемых источников энергии, чей экспорт из США больше, чем импорт. Кроме того, экспортируются также и технологии. 60%[7] компаний-членов Геотермал Энерджи Ассошиэйшн (Geothermal Energy Association) в настоящее время стремятся делать бизнес не только на территории США, но и за ее пределами (в Турции, Кении, Никарагуа, Новой Зеландии, Индонезии, Японии и пр.)
Геотермальная электроэнергетика, как один из альтернативных источников энергии в стране, имеет особую правительственную поддержку.
На 2003 год 1930 МВт электрической мощности установлено на Филиппинских островах, в Филиппинах парогидротермы обеспечивают производство около 27% всей электроэнергии в стране.
Страна на 2003 год находилась на третьем месте по выработке геотермальной энергии в мире, с установленной мощностью электростанций в 953 МВт. На важнейшей геотермальной зоне Серро Прието расположились станции общей мощностью в 750 МВт.
В Италии на 2003 год действовали энергоустановки общей мощностью в 790 МВт.
В Исландии действуют пять теплофикационных геотермальных электростанций общей электрической мощностью 570 МВт (2008), которые производят 25 % всей электроэнергии в стране.
Одна из таких станций снабжает столицу Рейкьявик. Станция использует подземную воду, а излишки воды сливают в гигантский бассейн.
В Кении на 2005 год действовали три геотермальные электростанции общей электрической мощностью в 160 МВт., существуют планы по росту мощностей до 576 МВт.
Один из крупнейших производителей геотермальной энергии в мире. Сотрудничает по этому вопросу с США. По некоторым данным геотермальная энергия обеспечивает электричеством около 500 тыс. жителей страны.
Все российские геотермальные электростанции расположены на Камчатке и Курилах, суммарный электропотенциал пароводных терм одной Камчатки оценивается в 1 ГВт рабочей электрической мощности. Российский потенциал реализован только в размере не многим более 80 МВт установленной мощности (2009) и около 450 млн. кВт·ч годовой выработки (2009):
В Ставропольском крае на Каясулинском месторождении начато и приостановлено строительство дорогостоящей опытной Ставропольской ГеоТЭС мощностью 3 МВт.
Слаботермальные | до 40°C |
Термальные | 40-60°C |
Высокотермальные | 60-100°C |
Перегретые | более 100°C |
ультрапресные | до 0,1 г/л |
пресные | 0,1-1,0 г/л |
слабосолоноватые | 1,0-3,0 г/л |
сильносолоноватые | 3,0-10,0 г/л |
соленые | 10,0-35,0 г/л |
рассольные | более 35,0 г/л |
очень мягкие | до 1,2 мг-экв/л |
мягкие | 1,2-2,8 мг-экв/л |
средние | 2,8-5,7 мг-экв/л |
жесткие | 5,7-11,7 мг-экв/л |
очень жесткие | более 11,7 мг-экв/л |
сильнокислые | до 3,5 |
кислые | 3,5-5,5 |
слабокислые | 5,5-6,8 |
нейтральные | 6,8-7,2 |
слабощелочные | 7,2-8,5 |
щелочные | более 8,5 |
сероводородные | |
сероводородно-углекислые | |
углекислые | |
азотно-углекислые | |
метановые | |
азотно-метановые | |
азотные |
слабая | до 100 мг/л |
средняя | 100-1000 мг/л |
высокая | более 1000 мг/л |
|
|
---|---|
Электроэнергетика | Атомная (АЭС) | Ветровая (ВЭС) | Гидроэнергетика (ГЭС) | Тепловая (ТЭС) | Геотермальная | Водородная | Гелиоэнергетика | Волновая | Приливная (ПЭС) |
Топливная | Газовая | Нефтяная | Торфяная | Угольная | Нефтеперерабатывающая | Газоперерабатывающая |
Чёрная металлургия | Добыча рудного сырья | Добыча нерудного сырья | Производство чёрных металлов | Производство труб | Производство электроферосплавов | Коксохимическая | Вторичная обработка чёрных металов | Производство метизов |
Цветная металлургия | Производства: алюминия | глинозёма | фтористых солей | никеля | меди | свинца | цинка | олова | кобальта | сурмы | вольфрама | молибдена | ртути | титана | магния | вторичных цветных металлов | редких металлов | Промышленность твердых сплавов тугоплавких и жаростойких металлов | Добыча и обогащение руд редких металлов |
Машиностроение и металлообработка |
Тяжелое | Железнодорожное | Судостроение | Судоремонт | Авиационная | Авиаремонт | Ракетная | Тракторное | Автомобильное | Станкостроение | Химическое | Сельскохозяйственное | Электротехническая | Приборостроение | Точное | Металлобработка |
Химическая | Шахтерско-химическая | Основная химия | Лакокрасочная | Промышленность бытовой химии | Производство соды | Производство удобрений | Производство химических волокон и нитей | Производство синтетических смол |
Химико-фармацевтическая | |
Нефтехимическая | Шинная | Резино-асбестовая |
Нефтеперерабатывающая | |
Лесная (комплексы) |
Лесная | Деревообрабатывающая (Лесопильная, Древесно-плитная, Мебельная) | Целлюлозно-бумажная | Лесохимическая |
Стройматериалов | Цементная | Железобетонных и бетонных конструкций | Стенных материалов | Нерудных строительных материалов |
Стекольная | |
Фарфоро-Фаянсовая | |
Легкая | Текстильная | Швейная | Кожевенная | Меховая | Обувная |
Текстильная | Хлопчатобумажная | Шерстяная | Льняная | Шелковая | Синтетических и искусственных тканей | Пенько-джутовая |
Пищевая | Сахарная | Хлебобулочная | Масло-жировая | Маслосыродельная | Рыбная | Молочная | Мясная | Кондитерская | Спиртовая | Макаронная | Пивоваренная и безалкогольных напитков | Винодельческая | Мукомольная | Консервная | Табачная | Соляная | Плодоовощная |
Tags: Геотермальная энергетика реферат скачать, геотермальная энергетика в крыму, геотермальная энергетика принцип получения энергии, геотермальная энергетика геоэс.