Метки: Оптическое волокно работа, оптическое волокно использование, оптическое волокно на катушке, оптическое волокно мм, оптическое волокно интернет, оптическое волокно стоимость, оптическое волокно моды.
Опти́ческое волокно́ — нить из оптически прозрачного материала (стекло, пластик), используемая для переноса света внутри себя посредством полного внутреннего отражения.
Волоконная оптика — раздел прикладной науки и машиностроения, описывающий такие волокна. Кабели на базе оптических волокон используются в волоконно-оптической связи, позволяющей передавать информацию на бо́льшие расстояния с более высокой скоростью передачи данных, чем в электронных средствах связи. В ряде случаев они также используются при создании датчиков.
Принцип передачи света, используемый в волоконной оптике, был впервые продемонстрирован в XIX веке, но повсеместное применение было затруднено отсутствием соответствующих технологий.
В 1934 г. американец Норман Р. Френч получил патент на оптическую телефонную систему, речевые сигналы в которой передавались при помощи света по стержням чистого стекла. В 1962 г. был создан полупроводниковый лазер и фотодиод, используемые как источник и приемник оптического сигнала.
Повсеместному переходу на технологии ВОЛС мешали высокие затухания в оптическом волокне, поэтому конкуренция с медными линиями была невозможна. Только к 1970 г. компании Corning удалось наладить коммерческое производство волокна с низким затуханием — до 17 дБ/км, через пару лет — до 4 дБ/км. Волокно являлось многомодовым и по нему передавалось несколько мод света. К 1983 году был освоен выпуск одномодовых волокон, по которым передавалась одна мода.
В России первые волоконно-оптические линии появились в Санкт-Петербурге. Первой подводной ВОЛС стала магистраль Санкт-Петербург — Аберслунд (Дания), проложенная АО «Совтелеком» (ныне ОАО «Ростелеком») .
В настоящее время в России построены заводы по производству волоконно-оптического кабеля, наиболее часто применяемое волокно в котором — Corning и Fujikura
.Стеклянные оптические волокна делаются из кварцевого стекла, но для дальнего инфракрасного диапазона могут использоваться другие материалы, такие как фторцирконат, фторалюминат и халькогенидные стекла. Как и другие стекла, эти имеют показатель преломления около 1,5.
В настоящее время развивается применение пластиковых оптических волокон. Сердечник в таком волокне изготовляют из полиметилметакрилата (PMMA), а оболочку из фторированных PMMA (фторполимеров).
Оптическое волокно, как правило, имеет круглое сечение и состоит из двух частей — сердцевины и оболочки. Для обеспечения полного внутреннего отражения абсолютный показатель преломления сердцевины несколько выше показателя преломления оболочки. Сердцевина изготавливается из чистого материала (стекла или пластика) и имеет диаметр 9 мкм. Оболочка имеет диаметр 125 мкм и состоит из материала с примесями, изменяющими показатель преломления. Например, если показатель преломления оболочки равен 1.474, то показатель преломления сердцевины — 1.479. Луч света, направленный в сердцевину, будет распространяться по ней, многократно отражаясь от оболочки.
Возможны и более сложные конструкции: в качестве сердцевины и оболочки могут применяться двумерные фотонные кристаллы, вместо ступенчатого изменения показателя преломления часто используются волокна с градиентным профилем показателя преломления, форма сердцевины может отличаться от цилиндрической. Такие конструкции обеспечивают волокнам специальные свойства: удержание поляризации распространяющегося света, снижение потерь, изменение дисперсии волокна и др.
Оптические волокна, используемые в телекоммуникациях, как правило, имеют диаметр 125±1 микрон. Диаметр сердцевины может отличаться в зависимости от типа волокна и национальных стандартов.
Оптические волокна могут быть одномодовыми и многомодовыми. Диаметр сердцевины одномодовых волокон составляет от 7 до 10 микрон. Благодаря малому диаметру достигается передача по волокну лишь одной моды излучения, за счёт чего исключается влияние дисперсионных искажений. В настоящее время практически все производимые волокна являются одномодовыми.[1]
Существует три основных типа одномодовых волокон:
Многомодовые волокна отличаются от одномодовых диаметром сердцевины, который составляет 50 микрон в европейском стандарте и 62.5 микрон в североамериканском и японском стандартах. Из-за большого диаметра сердцевины по многомодовому волокну распространяется несколько мод излучения — каждая под своим углом, из-за чего импульс света испытывает дисперсионные искажения и из прямоугольного превращается в колоколоподобный.
Многомодовые волокна подразделяются на ступенчатые и градиентные. В ступенчатых волокнах показатель преломления от оболочки к сердцевине изменяется скачкообразно. В градиентных волокнах это изменение происходит иначе — показатель преломления сердцевины плавно возрастает от края к центру. Это приводит к явлению рефракции в сердцевине, благодаря чему снижается влияние дисперсии на искажение оптического импульса. Профиль показателя преломления градиентного волокна может быть параболическим, треугольным, ломаным и т. д.
Полимерные (пластиковые) волокна производят диаметром 50, 62.5, 120 и 980 микрометров и оболочкой диаметром 490 и 1000 мкм.
Крупнейшие производители оптических волокон
:В России оптические волокна выпускаются только
лабораториями под заказ.Основное применение оптические волокна находят в качестве среды передачи на волоконно-оптических телекоммуникационных сетях различных уровней: от межконтинентальных магистралей до домашних компьютерных сетей. Применение оптических волокон для линий связи обусловлено тем, что оптическое волокно обеспечивает высокую защищенность от несанкционированного доступа, низкое затухание сигнала при передаче информации на большие расстояния и возможность оперировать с чрезвычайно высокими скоростями передачи. Уже к 2006-му году была достигнута скорость модуляции 111 ГГц[3][4], в то время как скорости 10 и 40 Гбит/с стали уже стандартными скоростями передачи по одному каналу оптического волокна. При этом каждое волокно, используя технологию спектрального уплотнения каналов может передавать до нескольких сотен каналов одновременно, обеспечивая общую скорость передачи информации, исчисляемую терабитами в секунду. Так, к 2008 году была достигнута скорость 10,72 Тбит/с[5], а к 2012 — 20 Тбит/с[6].
Оптическое волокно может быть использовано как датчик для измерения напряжения, температуры, давления и других параметров. Малый размер и фактическое отсутствие необходимости в электрической энергии дают волоконно-оптическим датчикам преимущество перед традиционными электрическими в определённых областях.
Оптическое волокно используется в гидрофонах в сейсмических или гидролокационных приборах. Созданы системы с гидрофонами, в которых на волоконный кабель приходится более 100 датчиков. Системы с гидрофоновым датчиком используются в нефтедобывающей промышленности, а также флотом некоторых стран. Немецкая компания Sennheiser разработала лазерный микрофон, основными элементами которого являются лазерный излучатель, отражающая мембрана и оптическое волокно[7].
Волоконно-оптические датчики, измеряющие температуры и давления, разработаны для измерений в нефтяных скважинах. Они хорошо подходят для такой среды, работая при температурах, слишком высоких для полупроводниковых датчиков.
Разработаны устройства дуговой защиты с волоконно-оптическими датчиками, основными преимуществами которых перед традиционными устройствами дуговой защиты являются: высокое быстродействие, нечувствительность к электромагнитным помехам, гибкость и лёгкость монтажа, диэлектрические свойства.
Оптическое волокно применяется в лазерном гироскопе, используемом в Boeing 767 и в некоторых моделях машин (для навигации). Волоконно-оптические гироскопы применяются в космических кораблях «Союз»[8]. Специальные оптические волокна используются в интерферометрических датчиках магнитного поля и электрического тока. Это волокна, полученные при вращении заготовки с сильным встроенным двойным лучепреломлением.
Оптические волокна широко используются для освещения. Они используются как световоды в медицинских и других целях, где яркий свет необходимо доставить в труднодоступную зону. В некоторых зданиях оптические волокна направляют солнечный свет с крыши в какую-нибудь часть здания. Волоконно-оптическое освещение также используется в декоративных целях, включая коммерческую рекламу, искусство и искусственные рождественские ёлки.
Оптическое волокно также используется для формирования изображения. Пучок света, передаваемый оптическим волокном, иногда используется совместно с линзами — например, в эндоскопе, который используется для просмотра объектов через маленькое отверстие.
Оптическое волокно используется при конструировании волоконного лазера.
оптическое волокно в Викисловаре? | |
Tags: Оптическое волокно работа, оптическое волокно использование, оптическое волокно на катушке, оптическое волокно мм, оптическое волокно интернет, оптическое волокно стоимость, оптическое волокно моды.