Momotik.ru

Народный проект

Метки: Пропилен трубы для отопления, пропилен физико-химические свойства, пропилен 2-бромпропан пропилен, пропилен молекулярная масса, пропилен балаково, пропилен в гранулах, пропилен с бромной водой.


Пропилен
Общие
Химическая формула C3H6
Физические свойства
Молярная масса 42.08 г/моль
Плотность 0.695@-47 °C г/см³
Термические свойства
Температура плавления − 185.2 °C
Температура кипения − 47.6 °C
Классификация
Рег. номер CAS 115-07-1
SMILES C=CC

Пропиле́н (пропен) СН2=СН-СН3 — непредельный (ненасыщенный) углеводород ряда этилена, горючий газ, является изологом пропана. Наркотик с наркотическим действием более сильным, чем у этилена. Класс опасности - четвертый.[1].

Содержание

Физические свойства

Пропилен представляет собой газообразное вещество с низкой температурой кипения tкип= -47,7 °C и температурой плавления tпл= −187,6 °C, оптическая плотность d204=0,5193.

Химические свойства

Обладает значительной реакционной способностью. Его химические свойства определяются двойной углерод-углеродной связью. p-связь, как наименее прочная и более доступная, при действии реагента разрывается, а освободившиеся валентности углеродных атомов затрачиваются на присоединение атомов, из которых состоит молекула реагента. Все реакции присоединения протекают по двойной связи и состоят в расщеплении π-связи алкена и образовании на месте разрыва двух новых σ-связей.

Чаще реакции присоединения идут по гетеролитическому типу, являясь реакциями электрофильного присоединения.

Присоединение галогенов (галогенирование)

Реакцию галогенирования обычно проводят в растворителе при обычной температуре. Галогены легко присоединяются по месту разрыва двойной связи с образованием дигалогенопроизводных. Легче идет присоединение хлора и брома, труднее — йода. Фтор взаимодействует со взрывом.

Присоединение водорода (реакция гидрирования)

Присоединяя водород в присутствии катализаторов (Pt, Pd, Ni), пропен переходит в предельный углеводород — пропан.

Присоединение воды (реакция гидратации)

Пропилен реагирует с водой с образованием одноатомного спирта изопропанола, при этом двойная связь раскрывается.

Присоединение галогеноводородов (HHal)

Происходит по правилу Марковникова. Водород кислоты HHal присоединяется к наиболее гидрированному атому углерода при двойной связи. Соответственно остаток Hal связывается с атомом углерода, при котором находится меньшее число атомов водорода.


Пример гидрогалогенирования — получение бромпроизводного пропана при реакции бромоводорода и пропилена.

Горение на воздухе

При поджигании горит на воздухе: 2СН2=СНСН3 + 9О2 → 6СО2 + 6Н2О.

С кислородом воздуха газообразный пропилен образует взрывчатые смеси.

В слабощелочной или нейтральной водной среде пропилен окисляется перманганатом калия, что сопровождается обесцвечиванием раствора KMnO4 и образованием гликолей (соединений с двумя гидроксильными группами при соседних атомах углерода). Эта реакция получила название реакции Вагнера.

Полимеризация

Условия реакции: нагревание, присутствие катализаторов. Соединение молекул происходит путем расщепления внутримолекулярных π-cвязей и образования новых межмолекулярных σ-cвязей.

Окисление кислородом воздуха в пропиленоксид

При нагревании в присутствии серебряных катализаторов:

Получение

В лаборатории

1. Отщепление галогеноводорода от галогеналкилов при действии на них спиртового раствора щелочи:

    H2C—CH – CH3 → H2C=CH–CH3 + KCl + H2O 
    |    |  
Cl H
K — ОH

2. Гидрирование пропина в присутствии катализатора (Pd):

H—C≡C—CH3 + H2 → H2C=CH—CH3

3. Дегидратация изопропилового спирта (отщепление воды). В качестве катализатора используют кислоты (серную или фосфорную) или Аl2O3:

     Н2С—СН — CH3 → Н2С=СН — CH3 + Н2О
     |   | 
     H  OH

4. Отщепление двух атомов галогена от дигалогеноалканов, содержащих галогены при соседних атомах С. Реакция протекает под действием металлов (Zn и др.):

  H2C-CH-CH3+Zn → H2C=CH-CH3+ZnBr2 
| |
Br Br

В промышленности

Обычно пропилен выделяют из газов нефтепереработки (при крекинге сырой нефти в кипящем слое (процесс фирмы BASF), пиролизе бензиновых фракций) или попутных газов, а также из газов коксования угля. Существует несколько видов пиролиза пропилена: пиролиз в трубчатых печах, пиролиз в реакторе с кварцевым теплоносителем (процесс фирмы Phillips Petroleum Co.), пиролиз в реакторе с коксовым теплоносителем (процесс фирмы Farbewerke Hoechst), пиролиз в реакторе с песком в качестве теплоносителя (процесс фирмы Lurgi), пиролиз в трубчатой печи (процесс фирмы Kellogg), процесс Лавровского — Бродского, автотермический пиролиз по Бартоломе. В промышленности пропилен получают также дегидрированием алканов в присутствии катализатора (Сr2О3, Аl2О3).

Промышленным способом получения пропилена наряду с крекингом служит дегидратация пропанола над оксидом алюминия:

Применение

Для производства оксида пропилена, получения изопропилового спирта и ацетона, для синтеза альдегидов, для получения акриловой кислоты и акрилонитрила, полипропилена, пластмасс, каучуков, моющих средств, компонентов моторных топлив, растворителей.

Производство

Большая часть производственных мощностей по пропилену сосредоточена в Европе, Северной Америке и Азии. В настоящее время за год в мире производится более 50 миллионов тонн пропилена полимерного и химического сортов (PG/CG). Большая часть выпуска пропилена этих сортов приходится на долю установок пиролиза, где пропилен — побочный продукт производства этилена. Установками термического крекинга вырабатывается более 60 % такого пропилена. Нефтеперерабатывающими FCC-предприятиями выпускается 34 %. При дегидрогенизации или метатезисе пропана производится 3 % пропилена (в данном случае пропилен является целевым продуктом).

Пропилен нефтехимической чистоты (RG) производится на нефтеперерабатывающих предприятиях мира в количестве, равном 31,2 миллионам тонн. Большая часть такого пропилена вырабатывается на FCC-предприятиях, где пропилен — побочный продукт производства бензина и дистиллятов. Половина этих пропиленовых мощностей интегрирована с нефтехимическими предприятиями, на которых происходит алкилирование пропилена или смешивание LPG и пропана.

Источники

  • http://www.ssa.ru
  • http://chem.edu.ru
  • А. И. Артеменко, Органическая химия, М.:Высшая школа — 1998
  • Б. Д. Степин, А. А. Цветков, Органическая химия, М.:Высшая школа — 1994

Примечания

  1. Газохроматографическое измерение массовых концентраций углеводородов: метана, этана, этилена, пропана, пропилена, нбутана, альфа-бутилена, изопентана в воздухе рабочей зоны. Методические указания. МУК 4.1.1306-03 (УТВ. ГЛАВНЫМ ГОСУДАРСТВЕННЫМ САНИТАРНЫМ ВРАЧОМ РФ 30.03.2003)

Ссылки

  • http://www.xumuk.ru
  • http://chemindustry.ru

Tags: Пропилен трубы для отопления, пропилен физико-химические свойства, пропилен 2-бромпропан пропилен, пропилен молекулярная масса, пропилен балаково, пропилен в гранулах, пропилен с бромной водой.