Метки: Фазовое пространство распределение максвелла-больцмана, фазовое пространство физической системы, фазовое пространство и функция распределения, фазовое пространство реферат, фазовое пространство фазовый объем.
Фазовое пространство в математике и физике — пространство, на котором представлено множество всех состояний системы, так, что каждому возможному состоянию системы соответствует точка фазового пространства.
Сущность понятия фазового пространства заключается в том, что состояние сколь угодно сложной системы представляется в нём одной единственной точкой, а эволюция этой системы — перемещением этой точки. Кроме того, в механике движение этой точки определяется сравнительно простыми уравнениями Гамильтона, анализ которых позволяет делать заключения о поведении сложных механических систем.
В классической механике гладкие многообразия служат как фазовые пространства.
Содержание |
В случае механических систем это пространство четной размерности, координатами в котором являются обычные пространственные координаты (или обобщённые координаты) частиц системы и их импульсы (или обобщённые импульсы).
Например, фазовое пространство для системы, состоящей из одной свободной материальной точки, имеет 6 измерений, три из которых — это три обычные координаты, а ещё три — это компоненты импульса. Соответственно, фазовое пространство для системы из двух свободных материальных точек будет содержать 12 измерений и т. д.
В теории динамических систем и теории дифференциальных уравнений фазовое пространство является более общим понятием. Оно не обязательно чётномерно и динамика на нём не обязательно задаётся уравнениями Гамильтона.
Если взять в рассмотрение несколько одинаковых систем, нужно задать несколько точек в фазовом пространстве. Совокупность таких систем называют статистическим ансамблем. По теореме Лиувилля, замкнутая кривая (или поверхность), состоящая из точек фазового пространства гамильтоновой системы эволюционирует так, что площадь (или объем) заключенного в ней фазового пространства сохраняется во времени.
Понятие фазового пространства широко используется в разных областях физики.
Интерпретация состояния движущегося объекта как точки в фазовом пространстве разрешает парадокс Зенона. (Парадокс состоит в том, что если мы описываем состояние объекта его положением в конфигурационном пространстве, то объект не может двигаться.)
Фазовое пространство состояний квантового осциллятора позволяет описать квантовый шум усилителя в терминах неопределенностей эрмитовой и анти-эрмитовой компонент поля; при этом не требуется предположение о линейности преобразования фазового пространства, осуществляемого усилителем [1]. Производные передаточной функции усилителя определяют ограничение снизу на уровень квантового шума. Грубо говоря, чем более сложным является преобразование, тем больше квантовый шум.
Фазовое пространство позволяет построить единый формализм для классической и квантовой механики [2]. Оператор эволюции формулируется в терминах скобки Пуассона; в квантовом случае эта скобка является обычным коммутатором. При этом классическая и квантовая механика строятся на одних и тех же аксиомах; они формулируются в терминах, которые имеют смысл как в классической, так и в квантовой механике.
Это заготовка статьи по математике. Вы можете помочь проекту, исправив и дополнив её. |
Tags: Фазовое пространство распределение максвелла-больцмана, фазовое пространство физической системы, фазовое пространство и функция распределения, фазовое пространство реферат, фазовое пространство фазовый объем.