Momotik.ru

Народный проект

Воздушно-реактивный двигатель


Воздушно-реактивный двигатель (ВРД) — тепловой реактивный двигатель, в качестве рабочего тела которого используется разогретая смесь атмосферного воздуха и продуктов горения топлива. Нагрев происходит за счёт химической реакции окисления горючего кислородом из атмосферного воздуха. Ускорение рабочего тела происходит за счет повышения давления вследствие его нагрева.

Впервые этот термин в печатной публикации, по-видимому, был использован в 1929 г. Б. С. Стечкиным в журнале «Техника Воздушного Флота», где была помещена его статья «Теория воздушного реактивного двигателя»[источник не указан 316 дней]. В английском языке этому термину наиболее точно отвечает словосочетание англ. air-breathing jet engine.[источник не указан 316 дней]

Содержание

Воздушно-реактивные двигатели используются, как правило, для приведения в движение летательных аппаратов на высотах до 40 км для турбореактивных двигателей, до 55 км для прямоточных и, в теории, до 75 км для гиперзвуковых прямоточных.[1][неавторитетный источник?]

История

Первый турбореактивный самолёт Heinkel He 178.
Двигатель Jumo-004 — первый в мире крупносерийный ТРД

История воздушно-реактивных двигателей неразрывно связана с историей авиации. Прогресс в авиации на всём протяжении её существования обеспечивался, главным образом, прогрессом авиационных двигателей, а всё возраставшие требования, предъявляемые авиацией к двигателям, являлись мощным стимулятором развития авиационного двигателестроения.

К концу Второй мировой войны требование повышения мощности поршневых двигателей внутреннего сгорания вошло в неразрешимое противоречие с другими требованиями, предъявляемыми к авиамоторам — компактностью и ограничением массы. Дальнейшее развитие авиации по пути совершенствования поршневых двигателей становилось невозможным.

Первый патент на турбинный двигатель был выдан англичанину Джону Барберу в 1791 году.[источник не указан 316 дней] В 1913 году француз Рене Лорен получил патент на прямоточный воздушно-реактивный двигатель.[источник не указан 316 дней]

Следует отметить, что ряд инженеров и учёных разных стран в 20-е и 30-е годы XX века предвидели надвигающийся кризис в авиационном двигателестроении, и искали пути выхода из него, в том числе и за счёт ВРД.[источник не указан 316 дней]

Впервые в СССР проект реального истребителя с ВРД разработанным А. М. Люлькой, в марте 1943 года предложил начальник ОКБ-301 М. И. Гудков. Самолёт назывался Гу-ВРД[2]. Проект был отвергнут экспертами, главным образом, в связи с неверием в актуальность и преимущества ВРД в сравнении с поршневыми авиадвигателями.

Первым самолётом, поднявшимся в небо с турбореактивным двигателем (ТРД) HeS 3 конструкции фон Охайна, был He 178[источник не указан 316 дней] (фирма Хейнкель Германия), управляемый лётчиком-испытателем флюг-капитаном Эрихом Варзицем (27 августа 1939 года). Этот самолёт превосходил по скорости (700 км/ч) все поршневые истребители своего времени, максимальная скорость которых не превышала 650 км/ч,[источник не указан 316 дней] но при этом был менее экономичен, и вследствие этого имел меньший радиус действия. К тому же у него были бо́льшие скорости взлёта и посадки, чем у поршневых самолётов, из-за чего ему требовалась более длинная взлётно-посадочная полоса с качественным покрытием.

С августа 1944 года в Германии началось серийное производство реактивного истребителя-бомбардировщика Мессершмитт Me.262, оборудованного двумя турбореактивными двигателями Jumo-004 производства фирмы Юнкерс. А с ноября 1944 года начал выпускаться ещё и первый реактивный бомбардировщик Arado Ar 234 Blitz с теми же двигателями. Единственным реактивным самолётом союзников по антигитлеровской коалиции, формально принимавшим участие во Второй мировой войне, был «Глостер Метеор» (Великобритания) с ТРД Rolls-Royce Derwent 8 конструкции Ф. Уиттла (серийное производство которого началось даже раньше, чем немецких).[источник не указан 316 дней]

Leduc 010 первый аппарат, летавший с ПВРД (Музей в Ле Бурже). Первый полёт — 19 ноября 1946
Крылатая ракета «Буря» с ускорителями.
Самолёт-снаряд с ПуВРД Фау-1. (Музейный экспонат. Надпись на фюзеляже: «Руками не трогать»)

В послевоенные годы реактивное двигателестроение открыло новые возможности в авиации: полёты на скоростях, превышающих скорость звука, и создание самолётов с грузоподъёмностью, многократно превышающей грузоподъёмность поршневых самолётов.

Первым отечественным серийным реактивным самолётом был истребитель Як-15 (1946 г), разработанный в рекордные сроки на базе планера Як-3 и адаптации трофейного двигателя Jumo-004, выполненной в моторостроительном КБ В. Я. Климова под обозначением РД-10.[3]

А уже через год прошёл государственные испытания первый, полностью оригинальный, отечественный турбореактивный двигатель ТР-1,[4] разработанный в КБ А. М. Люльки (ныне НПО «Сатурн»).

Первым отечественным реактивным пассажирским авиалайнером был Ту-104 (1955 г), оборудованный двумя турбореактивными двигателями РД-3М-500 (АМ-3М-500), разработанными в КБ А. А. Микулина.

Запатентованный ещё в 1913 г, прямоточный воздушно-реактивный двигатель (ПВРД) привлекал конструкторов простотой своего устройства, но главное — своей потенциальной способностью работать на сверхзвуковых скоростях и в самых высоких, наиболее разреженных слоях атмосферы, то есть в условиях, в которых ВРД других типов неработоспособны или малоэффективны. В 1930-е годы с этим типом двигателей проводились эксперименты в США (Уильям Эвери), в СССР (Ф. А. Цандер, Б. С. Стечкин, Ю. А. Победоносцев).

В 1937 году французский конструктор Рене Ледюк получил заказ от правительства Франции на разработку экспериментального самолёта с ПВРД. Эта работа была прервана войной и возобновилась после её окончания. 19 ноября 1946 года состоялся первый в истории полёт аппарата с маршевым ПВРД.[5] Далее в течение десяти лет было изготовлено и испытано ещё несколько экспериментальных аппаратов этой серии, в том числе, пилотируемые,[6][неавторитетный источник?] а в 1957 году правительство Франции отказалось от продолжения этих работ — бурно развивавшееся в то время направление ТРД представлялось более перспективным.

Обладая рядом недостатков для использования на пилотируемых самолётах (нулевая тяга на месте, низкая эффективность на малых скоростях полёта), ПВРД является предпочтительным типом ВРД для беспилотных одноразовых снарядов и крылатых ракет, благодаря своей простоте, а, следовательно, дешевизне и надёжности. Начиная с 50-х годов XX века в США было создан ряд экспериментальных самолётов и серийных крылатых ракет разного назначения с этим типом двигателя.

В СССР с 1954 по 1960 гг в ОКБ-301 под руководством С.А.Лавочкина[7], разрабатывалась крылатая ракета «Буря», предназначавшаяся для доставки ядерных зарядов[8] на межконтинентальные расстояния, и использовавшая в качестве маршевого двигателя ПВРД. В 1957 году на вооружение уже поступила МБР Р-7, имевшая то же назначение, разработанная под руководством С. П. Королёва. Это ставило под сомнение целесообразность дальнейшей разработки «Бури». Из числа более современных отечественных разработок можно упомянуть противокорабельные крылатые ракеты с маршевыми ПВРД: П-800 Оникс, П-270 Москит.

Пульсирующий воздушно-реактивный двигатель (ПуВРД) был изобретён в XIX веке шведским изобретателем Мартином Вибергом.[источник не указан 316 дней] Наиболее известным летательным аппаратом (и единственным серийным) c ПуВРД Argus As-014 производства фирмы Argus-Werken, явился немецкий самолёт-снаряд Фау-1. После войны исследования в области пульсирующих воздушно-реактивных двигателей продолжились во Франции (компания SNECMA) и в США (Pratt & Whitney, General Electric), кроме того, благодаря простоте и дешевизне, маленькие двигатели этого типа стали очень популярны среди авиамоделистов, и в любительской авиации, и появились коммерческие фирмы, производящие на продажу для этих целей ПуВРД и клапаны к ним (быстроизнашивающаяся запчасть).[9]

Общие принципы работы

Несмотря на многообразие ВРД, существенно отличающихся друг от друга конструкцией, характеристиками и областью применения, можно выделить ряд принципов, общих для всех ВРД и отличающих их от тепловых двигателей других типов.

Реактивная тяга

Воздушно-реактивный двигатель — реактивный двигатель, развивающий тягу за счёт реактивной струи рабочего тела, истекающего из сопла двигателя. С этой точки зрения ВРД подобен ракетному двигателю (РД), но отличается от последнего тем, что большую часть рабочего тела он забирает из окружающей среды — атмосферы, в том числе и окислитель, необходимый для горения топлива. В качестве окислителя в ВРД используется кислород, содержащийся в воздухе. Благодаря этому ВРД обладает преимуществом в сравнении с ракетным двигателем при полётах в атмосфере. Если летательный аппарат, оборудованный ракетным двигателем должен транспортировать как горючее, так и окислитель, масса которого больше массы горючего в 2-8 раз, в зависимости от вида горючего, то аппарат, оснащённый ВРД должен иметь на борту только запас горючего.

Рабочее тело ВРД на выходе из сопла представляет собой смесь продуктов сгорания горючего с оставшимися после выгорания кислорода фракциями воздуха. Если для полного окисления 1 кг керосина (обычного топлива для ВРД) требуется около 3,4 кг чистого кислорода, то, учитывая, что атмосферный воздух содержит лишь 23 % кислорода по массе, для полного окисления этого горючего требуется 14,8 кг воздуха, и, следовательно, рабочее тело, как минимум, на 94 % своей массы состоит из исходного атмосферного воздуха. На практике в ВРД, как правило, имеет место избыток расхода воздуха (иногда — в несколько раз, по сравнению с минимально необходимым для полного окисления горючего), например, в турбореактивных двигателях массовый расход горючего составляет 1 % — 2 % от расхода воздуха.[10] Это позволяет при анализе работы ВРД, во многих случаях, без большого ущерба для точности, считать рабочее тело ВРД, как на выходе, так и на входе, одним и тем же веществом — атмосферным воздухом, а расход рабочего тела через любое сечение проточной части двигателя — одинаковым.

Динамику ВРД можно представить следующим образом: рабочее тело, поступает в двигатель со скоростью полёта, а покидает его со скоростью истечения реактивной струи из сопла. Из баланса импульса, получается простое выражение для реактивной тяги ВРД:[10]

(1)

Где  — сила тяги,  — скорость полёта,  — скорость истечения реактивной струи (относительно двигателя),  — секундный расход массы рабочего тела через двигатель. Очевидно, ВРД эффективен (создаёт тягу) только в случае, когда скорость истечения рабочего тела из сопла двигателя превышает скорость полёта: .

Скорость истечения газа из сопла теплового реактивного двигателя зависит от химического состава рабочего тела, его абсолютной температуры на входе в сопло, и от степени расширения рабочего тела в сопле двигателя (отношения давления на входе в сопло к давлению на его срезе).

Химический состав рабочего тела для всех ВРД можно считать одинаковым, что же касается температуры, и степени расширения, которые достигаются рабочим телом в процессе работы двигателя — имеют место большие различия для разных типов ВРД и разных образцов ВРД одного типа. Во всяком случае, для каждого ВРД существует некоторая максимальная, специфическая для данного двигателя скорость истечения рабочего тела из сопла, которая ограничивает сверху диапазон скоростей полёта, при которых данный ВРД эффективен.

С учётом вышесказанного можно сформулировать и главные недостатки ВРД в сравнении с РД:

  • ВРД работоспособен только в атмосфере, а РД — в любой среде и в пустоте.
  • ВРД эффективен только до некоторой, специфической для данного двигателя, предельной скорости полёта, а тяга РД не зависит от скорости полёта.
  • ВРД значительно уступает ракетному двигателю в удельной тяге по весу — отношении тяги двигателя к его весу. Например, для ТРД АЛ-31ФП этот показатель равен 9,5, а для ЖРД НК-33 — 128. Из этого следует, что при одной и той же тяге ракетный двигатель в несколько раз (иногда, более чем в десять раз) легче ВРД.

Термодинамические свойства

В основу большинства ВРД как тепловой машины положен термодинамический цикл Брайтона, в котором сначала происходит адиабатическое сжатие рабочего тела. Потом производится изобарический подвод теплоты за счёт сжигания топлива в камере сгорания. После чего следует адиабатическое расширение во время которого и формируется реактивная струя. Завершает цикл изобарический[источник не указан 301 день] отвод теплоты в процессе охлаждения реактивной струи в атмосфере.

Наиболее рациональным является формирование реактивной струи в процессе расширения до достижения статического давления рабочего тела, равного забортному атмосферному давлению.[11]. Таким образом, для ВРД обязательно условие: рабочего тела перед началом фазы расширения должно превышать атмосферное, и чем больше — тем лучше, тем выше полезная работа термогазодинамического цикла и его КПД. Но в окружающей среде, из которой забирается рабочее тело, оно находится при атмосферном давлении. Следовательно, чтобы ВРД мог работать, необходимо тем или иным способом повысить давление рабочего тела в двигателе по отношению к атмосферному.

Эффективность

Эффективность ВРД определяют несколько КПД или коэффициентов полезного действия.

Эффективность ВРД как теплового двигателя определяет эффективный КПД двигателя: (2) Где Q1 — количество теплоты отданное нагревателем, Q2 — количество теплоты полученное холодильником.

Зависимость полётного КПД от отношения

Эффективность ВРД как движителя определяет полётный или тяговый КПД: (3)

Сравнивая формулы (1) и (3) можно прийти к выводу, что чем выше разница между скоростью истечения газов из сопла и скоростью полета, тем выше тяга двигателя и тем ниже полетный КПД. При равенстве скоростей полета и истечения газов из сопла полетный КПД будет равен 1, то есть 100 %, но тяга двигателя будет равна 0. По этой причине проектирование ВРД является компромиссом между создаваемой им тягой и его полетным КПД.

Общий или полный КПД ВРД является произведением двух приведенных выше КПД: (4)

Воздушно-реактивные двигатели можно разбить на две основные группы. ВРД прямой реакции, в которых тяга создается исключительно за счёт реактивной струи истекающей из сопла. И ВРД непрямой реакции, в которых тяга кроме или вместо реактивной струи создается посредством использования специального движителя, например пропеллера или несущего винта вертолёта. Применяется также классификация по признаку наличия механического воздушного компрессора в тракте двигателя: в этом случае ВРД подразделяются на бескомпрессорные (ПВРД с его вариантами, ПуВРД с его вариантами) — и компрессорные, где компрессор приводится от газовой турбины — ТРД, ТРДД, ТВД с их вариантами, а также мотокомпрессорный воздушно-реактивный двигатель, в котором компрессор приводится не от турбины, а от отдельного двигателя внутреннего сгорания (с воздушным винтом или без него).

Основные характеристики

Основные параметры характеризующие двигатели следующие:

  1. Тяга для двигателей прямой реакции / мощность для двигателей непрямой реакции.
  2. Масса.
  3. Габариты (входной диаметр и длина по оси).
  4. Удельный расход топлива. (отношение расхода топлива за единицу времени к создаваемой двигателем тяге/мощности).
  5. Расход воздуха.
  6. Степень повышения полного давления.
  7. Температура газа перед турбиной.

Прямоточный воздушно-реактивный двигатель

Схема устройства ПВРД на жидком топливе.
1. Встречный поток воздуха;
2. Центральное тело.
3. Входное устройство.
4. Топливная форсунка.
5. Камера сгорания.
6. Сопло.
7. Реактивная струя.

Прямоточный воздушно-реактивный двигатель (ПВРД, англ. Ramjet) является самым простым в классе ВРД по устройству. Необходимое для работы двигателя повышение давления достигается за счёт торможения встречного потока воздуха.

Рабочий процесс ПВРД кратко можно описать следующим образом:

  • Воздух, поступая со скоростью полёта во входное устройство двигателя, затормаживается, на выходе из входного устройства, при входе в камеру сгорания рабочее тело имеет максимальное на всём протяжении проточной части двигателя давление.
  • Сжатый воздух в камере сгорания нагревается за счёт окисления подаваемого в неё топлива, внутренняя энергия рабочего тела при этом возрастает.
  • Затем сначала сужаясь в сопле достигает звуковой скорости, а потом расширяясь — сверхзвуковой, рабочее тело ускоряется и истекает со скоростью большей, чем скорость встречного потока, что и создаёт реактивную тягу.
Препарированный ПВРД «Тор» ракеты «Бладхаунд». Хорошо видны входное устройство и вход в камеру сгорания

Конструктивно ПВРД имеет предельно простое устройство. Двигатель состоит из камеры сгорания, в которую из диффузора поступает воздух, а из топливных форсунок — горючее. Заканчивается камера сгорания входом в сопло, как правило, суживающееся-расширяющееся.

В зависимости от скорости полёта ПВРД подразделяются на дозвуковые, сверхзвукрвые и гиперзвуковые. Это разделение обусловлено конструктивными особенностями каждой из этих групп.

Дозвуковые прямоточные двигатели

Дозвуковые ПВРД предназначены для полётов на скоростях с числом Маха от 0,5 до 1. Торможение и сжатие воздуха в этих двигателях происходит в расширяющемся канале входного устройства — диффузоре.

Эти двигатели характеризуются крайне низкой эффективностью. По этому дозвуковые прямоточные двигатели оказались неконкурентоспособными в сравнении с авиадвигателями других типов и в настоящее время серийно не выпускаются.

Сверхзвуковые прямоточные двигатели

СПВРД предназначены для полётов в диапазоне 1-5 Махов. Торможение сверхзвукового газового потока происходит всегда разрывно (скачкообразно) с образованием ударной волны, называемой также скачком уплотнения. Чем интенсивнее скачок уплотнения, то есть чем больше изменение скорости потока на его фронте, тем больше потери давления, которые могут превышать 50 %.

Беспилотный разведчик Lockheed D-21B (США). ПВРД с осесимметричным входным устройством с центральным телом.

Потери давления удаётся минимизировать за счёт организации сжатия не в одном, а в нескольких последовательных скачках уплотнения меньшей интенсивности, после каждого из которых, скорость потока снижается. В промежутках между скачками параметры потока остаются постоянными. В последнем скачке скорость становится дозвуковой и дальнейшее торможение и сжатие воздуха происходит непрерывно в расширяющемся канале диффузора.

В сверхзвуковом диапазоне скоростей ПВРД значительно более эффективен, чем в дозвуковом. Например, на скорости 3 Маха для идеального ПВРД степень повышения давления составляет 36,7, что сравнимо с показателями самых высоконапорных компрессоров турбореактивных двигателей,[источник не указан 316 дней] а термический КПД теоретически достигает 64,3 %. У реальных ПВРД эти показатели ниже, но даже с учётом потерь, в диапазоне полётного числа Маха от 3 до 5 сверхзвуковые ПВРД превосходят по эффективности ВРД всех других типов.

Гиперзвуковой ПВРД

Экспериментальный гиперзвуковой летательный аппарат X-43 (рисунок художника)

Гиперзвуковой прямоточный воздушно-реактивный двигатель (ГПВРД, англ. Scramjet) — ПВРД, работающий на скоростях полёта свыше пяти Махов и предназначенный для полётов в стратосфере. Возможное назначение летательного аппарата с гиперзвуковым ПВРД — низшая ступень многоразового носителя космических аппаратов.

Сжатие воздуха происходит в двух скачках уплотнения: внешнем, образованным у носового окончания аппарата, и внутреннем — у передней кромки нижней стенки двигателя. Оба скачка — косые и скорость потока остаётся сверхзвуковой.

Существует несколько программ разработок гиперзвуковых ПВРД в разных странах, но на начало XXI века этот тип двигателя остается гипотетическим, не существует ни одного образца, прошедшего лётные испытания, подтвердившие практическую целесообразность его серийного производства.

Ядерный прямоточный двигатель

Во второй половине 50-х годов, в эпоху холодной войны, в США и СССР разрабатывались проекты ПВРД с ядерным реактором. Источником энергии этих двигателей является не химическая реакция горения топлива, а тепло, вырабатываемое ядерным реактором, размещённым на месте камеры сгорания. Воздух из входного устройства в таком ПВРД проходит через активную зону реактора, охлаждает его и нагревается сам до температуры около 3000 К[источник не указан 316 дней], а затем истекает из сопла со скоростью, сравнимой со скоростями истечения для самых совершенных жидкостных ракетных двигателей.[источник не указан 316 дней]

Возможное назначение летательного аппарата с таким двигателем — межконтинентальная крылатая ракета, носитель ядерного заряда. В обеих странах были созданы компактные малоресурсные ядерные реакторы, которые вписывались в габариты большой ракеты. В 1964 году в США, по программам исследований ядерного ПВРД «Pluto» и «Tory», были проведены стендовые огневые испытания ядерного прямоточного двигателя «Tory-IIC». Лётные испытания не проводились, программа была закрыта в июле 1964 года.

Область применения

ПВРД неработоспособен при низких и нулевых скоростях полёта. Для достижения начальной скорости, при которой он становится эффективным, аппарат с этим двигателем нуждается во вспомогательном приводе, который может быть обеспечен, например, твёрдотопливным ракетным ускорителем, или самолётом-носителем, с которого запускается аппарат с ПВРД. Неэффективность ПВРД на малых скоростях полёта делает его практически неприемлемым для использования на пилотируемых самолётах, но для беспилотных, боевых, крылатых ракет одноразового применения, летающих в диапазоне скоростей 2-5 Махов, благодаря своей простоте, дешевизне и надёжности, он предпочтителен. Также ПВРД используются в летающих мишенях. Основным конкурентом ПВРД в этой нише является ракетный двигатель.

Пульсирующий воздушно-реактивный двигатель

Изготовление авиамодели с ПуВРД

Пульсирующий воздушно-реактивный двигатель (ПуВРД, англоязычный термин англ. Pulsejet), как следует из его названия, работает в режиме пульсации, тяга развивается не непрерывно, как у ПВРД или ТРД, а в виде серии импульсов, следующих друг за другом с частотой от десятков герц, для крупных двигатателей, до 250 Гц — для малых двигателей.

Конструктивно, ПуВРД представляет собой цилиндрическую камеру сгорания с длинным цилиндрическим соплом меньшего диаметра. Передняя часть камеры соединена со входным диффузором, через который воздух поступает в камеру сгорания. Между диффузором и камерой сгорания установлен воздушные клапаны, работающие под воздействием разницы давлений в камере и на выходе диффузора, когда давление в диффузоре превышает давление в камере клапан открывается и пропускает воздух в камеру, при обратном соотношении давлений он закрывается.

Схема работы ПуВРД

Цикл работы ПуВРД можно описать так:

  1. Воздушный клапан открыт, воздух поступает в камеру сгорания, форсунка впрыскивает горючее, и в камере образуется топливная смесь.
  2. Топливная смесь воспламеняется и сгорает, давление в камере сгорания резко возрастает и закрывает воздушный клапан и обратный клапан в топливном тракте. Продукты сгорания, расширяясь, истекают из сопла, создавая реактивную тягу.
  3. Давление в камере падает, под напором воздуха в диффузоре воздушный клапан открывается и воздух начинает поступать в камеру, топливный клапан тоже открывается, двигатель переходит к фазе 1.

Для инициирования процесса горения в камере устанавливается свеча зажигания, которая создаёт высокочастотную серию электрических разрядов, и топливная смесь воспламеняется.

Кажущееся сходство ПуВРД и ПВРД ошибочно. В действительности ПуВРД имеет принципиальные отличия. Большинство ПуВРД могут работать при нулевой скорости.

Модификации пульсирующих двигателей

Образцы бесклапанных (U-образных) ПуВРД[12].

Существуют другие модификации ПуВРД.

  • Бесклапанные ПуВРД, иначе — U-образные ПуВРД. В этих двигателях отсутствуют механические воздушные клапаны, а чтобы обратное движение рабочего тела не приводило к уменьшению тяги, тракт двигателя выполняется в форме латинской буквы «U», концы которой обращены назад по ходу движения аппарата.
  • Детонационные ПуВРД (англ. Pulse detonation engine) — двигатели в которых горение топливной смеси происходит в режиме детонации (а не дефлаграции).

Область применения

ПуВРД характеризуется как шумный и неэкономный, зато простой и дешёвый. Высокий уровень шума и вибрации вытекает из самого пульсирующего режима его работы.

ПуВРД устанавливается на беспилотные летательные аппараты одноразового применения с рабочими скоростями до 0,5 Маха, летающие мишени, беспилотные разведчики, в прошлом крылатые ракеты.

ПуВРД используются любительской авиации и авиамоделировании, благодаря простоте и дешевизне.

Турбореактивный двигатель

Схема работы ТРД:
1. Забор воздуха
2. Компрессор низкого давления
3. Компрессор высокого давления
4. Камера сгорания
5. Расширение рабочего тела в турбине и сопле
6. Горячая зона;
7. Турбина
8. Зона входа первичного воздуха в камеру сгорания
9. Холодная зона
10. Входное устройство

В турбореактивном двигателе (ТРД, англ. turbojet engine) сжатие рабочего тела на входе в камеру сгорания и высокое значение расхода воздуха через двигатель достигается за счёт совместного действия встречного потока воздуха и компрессора, размещённого в тракте ТРД сразу после входного устройства, перед камерой сгорания. Компрессор приводится в движение турбиной, смонтированной на одном валу с ним, и работающей на рабочем теле, нагретом в камере сгорания, из которого образуется реактивная струя. В компрессоре осуществляется рост полного давления воздуха за счёт совершаемой компрессором механической работы. Камера сгорания большинства ТРД имеет кольцевую форму.

Из камеры сгорания нагретое рабочее тело поступает на турбину, расширяется, приводя её в движение и отдавая ей часть своей энергии, а после неё расширяется в сопле и истекает из него, создавая реактивную тягу. Благодаря компрессору ТРД может стартовать с места и работать при низких скоростях полёта, что для двигателя самолёта является необходимым условием, при этом давление в тракте двигателя и расход воздуха обеспечиваются только за счёт компрессора.

ТРД J85 производства компании General Electric. Между 8 ступенями компрессора и 2 ступенями турбины расположена кольцевая камера сгорания.

Диапазон скоростей, в котором ТРД эффективен, смещён в сторону меньших значений, по сравнению с ПВРД. Агрегат турбина-компрессор, позволяющий создавать большой расход и высокую степень сжатия рабочего тела в области низких и средних скоростей полёта, является препятствием на пути повышения эффективности двигателя в зоне высоких скоростей.

Максимальная скорость истечения реактивной струи у ТРД меньше, чем у ПВРД, что ограничивает сверху диапазон скоростей, на которых ТРД эффективен, значениями 2,5—3 Маха.[источник не указан 316 дней]

Основные конструктивные элементы

Форсажная камера

Форсажная камера ТРД General Electric J79. Вид со стороны сопла. В торце находится стабилизатор горения с установленными на нём топливными форсунками, за которым видна турбина.

Хотя в ТРД имеет место избыток кислорода в камере сгорания, этот резерв мощности не удаётся реализовать напрямую — увеличением расхода горючего в камере, из-за ограничения температуры рабочего тела, поступающего на турбину. Этот резерв используется в двигателях, оборудованных форсажной камерой, расположенной между турбиной и соплом. В режиме форсажа в этой камере сжигается дополнительное количество горючего, внутренняя энергия рабочего тела перед расширением в сопле повышается, в результате чего скорость его истечения возрастает, и тяга двигателя увеличивается, в некоторых случаях, более, чем в 1,5 раза, что используется боевыми самолётами при полетах на высоких скоростях. При форсаже значительно повышается расход топлива, ТРД с форсажной камерой практически не нашли применения в коммерческой авиации, за исключением самолётов Ту-144 и Конкорд, полеты которых уже прекратились.

Регулируемые сопла

Регулируемое сопло ТРДФ АЛ-21

ТРД самолётов летающих на сверхзвуковых скоростях[источник не указан 316 дней] оборудуются так называемыми регулируемыми соплами. Эти сопла состоят из продольных элементов, называемых створками, подвижных относительно друг друга и приводимых в движение специальным приводом, позволяющим по команде пилота или автоматической системы управления двигателем изменять геометрию сопла. При этом изменяются размеры критического (самого узкого) и выходного сечений сопла, что позволяет оптимизировать работу двигателя при полётах на разных скоростях.[13]

Отклоняемые створки сопла с ОВТ.

Специальные поворотные сопла, на некоторых двигателях, позволяют отклонять истекающий из сопла поток рабочего тела относительно оси двигателя. Отклонение вектора тяги приводит к дополнительным потерям тяги двигателя за счёт выполнения дополнительной работы по повороту потока и усложняют управление самолётом. Но эти недостатки полностью компенсируются значительным повышением маневренности и сокращением разбега самолёта при взлете и пробега при посадке, до вертикальных взлета и посадки включительно. ОВТ используется исключительно в военной авиации.

Область применения

До 70-80-х годов XX века ТРД с малой степенью двухконтурности активно применялись в качестве двигателей для военных и коммерческих самолётов. В настоящее время большую распространенность получили более экономичные двухконтурные ТРД (ТРДД).

Двухконтурный турбореактивный двигатель

Схема ТРДД.
1 — Вентилятор.
2 — Компрессор низкого давления.
3 — Компрессор высокого давления.
4 — Камера сгорания.
5 — Турбина высокого давления.
6 — Турбина низкого давления.
7 — Сопло.
8 — Вал ротора высокого давления.
9 — Вал ротора низкого давления.

Двухконтурный турбореактивный двигатель (ТРДД, англ. Turbofan) — ТРД с конструкцией позволяющей перемещать дополнительную массу воздуха, проходящую через внешний контур двигателя. Такая конструкция обеспечивает более высокие полетные КПД, по сравнению с обычными ТРД. Первым, предложившим концепцию ТРДД в отечественном авиадвигателестроении был Люлька А. М.[14] На основе исследований, проводившихся с 1937, А. М. Люлька представил заявку на изобретение двухконтурного турбореактивного двигателя (авторское свидетельство вручили 22 апреля 1941 года).[15]

Пройдя через входное устройство, воздух попадает в компрессор низкого давления, именуемый вентилятором. После вентилятора воздух разделяется на два потока. Часть воздуха попадает во внешний контур и, минуя камеру сгорания, формирует реактивную струю в сопле. Другая часть воздуха проходит сквозь внутренний контур, полностью идентичный с ТРД, о котором говорилось выше.

Одним из важнейших параметров ТРДД, является степень двухконтурности, то есть отношение расхода воздуха через внешний контур к расходу воздуха через внутренний контур. Где и расход воздуха через внутренний и внешний контуры соответственно.

Если вернуться к формулам (1) и (4) то принцип присоединения массы можно истолковать следующим образом. В ТРДД, согласно формуле (4) заложен принцип повышения полетного КПД двигателя, за счёт уменьшения разницы между скоростью истечения рабочего тела из сопла и скоростью полета.[источник не указан 316 дней] Уменьшение тяги, которое, согласно формуле (1), вызовет уменьшение этой разницы между скоростями, компенсируется за счёт увеличения расхода воздуха через двигатель. Следствием увеличения расхода воздуха через двигатель является увеличение площади фронтального сечения входного устройства двигателя, следствием чего является увеличение диаметра входа в двигатель, что ведет к увеличению его лобового сопротивления и массы. Иными словами, чем выше степень двухконтурности — тем большего диаметра будет двигатель при прочих равных условиях.

Все ТРДД можно разбить на 2 группы: со смешением потоков за турбиной и без смешения.

В ТРДД со смешением потоков (ТРДДсм) потоки воздуха из внешнего и внутреннего контура попадают в единую камеру смешения. В камере смешения эти потоки смешиваются и покидают двигатель через единое сопло с единой температурой. ТРДДсм более эффективны, однако наличие камеры смешения приводит к увеличению габаритов и массы двигателя.

ТРДД как и ТРД могут быть снабжены регулируемыми соплами и форсажными камерами. Как правило это ТРДДсм с малыми степенями двухконтурности для сверхзвуковых военных самолётов.

Турбовентиляторный двигатель

ТРДД с высокой степенью двухконтурности (выше 2) называют турбовентиляторными. ТРДД с высокой степенью двухконтурности выполняются, как правило, без камеры смешения. По причине большого входного диаметра таких двигателей их сопло внешнего контура достаточно часто делают укороченным с целью снижения массы двигателя.

Область применения

Можно сказать, что с 1960-х и по сей день в самолётном авиадвигателестроении — эра ТРДД. ТРДД различных типов являются наиболее распространенным классом воздушно-реактивных двигателей, используемых на самолётах, от высокоскоростных истребителей-перехватчиков с малой степенью двухконтурности до гигантских коммерческих и военно-транспортных самолётов с ТРДД с высокой степенью двухконтурности.

Турбовинтовой двигатель

Турбовинтовой двигатель. Привод винта от вала турбины осуществляется через редуктор

Конструктивно ТВД схож с ТРД, в котором мощность, развиваемая двигателем, передаётся на вал воздушного винта, обычно не напрямую, а через редуктор.

Турбовинтовые двигатели используются в транспортной и гражданской авиации.

Турбовальный двигатель

Схема турбовального двигателя.   — вал отбора мощности

Турбовальные двигатели конструктивно представляют собой турбореактивный двигатель, в котором мощность, развиваемая дополнительным каскадом турбины, передаётся на вал отбора мощности, чаще всего через редуктор. Так как между валом турбины и компрессора и валом отбора мощности нет механической связи, а только газодинамическая, турбовальные двигатели относят к ВРД непрямой реакции. Эти двигатели, строго говоря, не является реактивным, реакция выхлопа турбины составляет не более 10 % его суммарной тяги, однако традиционно их относят к воздушно-реактивным.

Используется для привода винтов вертолётов.

Винтовентиляторный двигатель

Як-44 с винтовентиляторными двигателями Д-27

Для улучшения характеристик эксплуатации ТВД применяют специальные многолопастные стреловидные винты с изменяемым шагом ВИШ с одним или двумя рядами лопастей. Такие ВИШ подвергаются более высокой нагрузке на ометаемую площадь при уменьшенном диаметре винта, но сохраняют относительно высокий КПД 0,8-0,85. Такие винты называются винтовентиляторами (ВВ), а двигатель – турбовинтовентиляторным (ТВВД) с открытым винтовентилятором.[16]

На сегодня известен лишь один серийный образец двигателя этого типа — Д-27 (ЗМКБ «Прогресс» им. академика А. Г. Ивченко, г. Запорожье, Украина.), использующийся на самолёте Як-44 с крейсерской скоростью полёта 670 км/ч, и на Ан-70 с крейсерской скоростью 750 км/ч.

У двигателя Д-27 поток холодного воздуха создаётся двумя соосными, вращающимися в противоположных направлениях, многолопастными саблевидными винтами, приводимыми в движение от свободной четырёхступенчатой турбины, турбовального двигателя. Мощность передается винтам через редуктор.

Распространенные заблуждения

Винтовые B-17 над Европой
  1. Двигатель отталкивается от воздуха турбинами. На самом деле, турбина — это только привод компрессора и вентилятора.
  2. Тяга создается в сопле. В воздушно-реактивных двигателях тягу создает весь двигатель.[17][18]
  3. Рёв турбин. ВРД создают немало шума, однако турбина — один из самых «тихих» узлов двигателя. Основную часть шума создают компрессор, вентилятор, воздушные винты, сопло. Основная составляющая шума — «рев» — возникает при взаимодействии пограничного слоя реактивной струи с неподвижным воздухом. Один из самых эффективных способов борьбы с «ревом» — применение ВРД с большой степенью двухконтурности (см. турбовентиляторный двигатель). При этом скорость реактивной струи падает, а масса отбрасываемого воздуха растет, что благоприятно сказывается и на удельной тяге (экономичности) двигателя.
  4. Инверсионный след — это реактивный след. Инверсионный след не имеет ни малейшего отношения непосредственно к реактивным двигателям. Инверсионный след наблюдается и у поршневых самолетов, если в атмосфере складывается благоприятные условия для этого явления. Это — результат взаимодействия частичек сгоревшего топлива и (или) поверхностей самолёта с атмосферным воздухом.

См. также

Литература

  • Казанджан П. К., Алексеев Л. П., Говоров А. Н., Коновалов Н. Е., Ю. Н. Нечаев, Павленко В. Ф., Федоров Р. М. Теория реактивных двигателей. М. Воениздат. 1955
  • Стечкин Б. С. Избранные труды. Теория тепловых двигателей. — М.: Наука, 1977. — 410 с.
  • В. М. Акимов, В. И. Бакулев, Р. И. Курзинер, В. В. Поляков, В. А. Сосунов, С. М. Шляхтенко. Под редакцией С. М. Шляхтенко. Теория и расчёт воздушно-реактивных двигателей. Учебник для вузов. 2-е издание, переработанное и дополненное. М.: Машиностроение, 1987
  • Кулагин В. В. Теория, расчёт и проектирование авиационных двигателей и энергетических установок. Изд. 2-е. М. Машиностроение. 2003.
  • Клячкин А. Л. Теория воздушно-реактивных двигателей, М., 1969

Ссылки

  • Исследование пульсирующих ВРД на примере немецкого самолёта-снаряда V-1 (англ.), США, 1946.
  • Работы по ПВРД и крылатым ракетам дальнего действия с ПВРД в СССР (1947—1960)
  • Двухконтурные ТРД

Примечания

  1. Scramjet «Advanced turbojets have an extreme operational ceiling of about 40 km, while ramjets have a ceiling of about 55 km. Scramjets can operate up to 75 km high without fear of stalling.»
  2. www.aviarmor.net/aww2/projects/su_gu_vrd.htm
  3. РД-10
  4. npo-saturn.ru
  5. Статья Leduc 010[неавторитетный источник?] в французской Википедии
  6. Статья Leduc 021 и Leduc 022 в французской Википедии
  7. НПО им. С.А. Лавочкина
  8. airbase.ru/sb/russia/lavochkin/la/350/index.htm Стратегическая крылатая ракета Ла-350 «Буря»
  9. http://www.laser-feinschweisstechnik.de/html/die_pulsoschmiede.html
  10. 1 2 Теория и расчёт воздушно-реактивных двигателей. Учебник для вузов. Авторы: В. М. Акимов, В. И. Бакулев, Р. И. Курзинер, В. В. Поляков, В. А. Сосунов, С. М. Шляхтенко. Под редакцией С. М. Шляхтенко. 2-е издание, переработанное и дополненное. М.: Машиностроение, 1987
  11. В сверхзвуковых соплах реактивных двигателей давление рабочего тела при истечении может опускаться и ниже атмосферного — так называемый режим перерасширения. При проектировании ВРД его стараются избегать, поскольку он приводит к снижению тяги.
  12. Иллюстрированное описание нескольких конструкций бесклапанных ПуВРД (на английском)
  13. http://www.airshow.ru/expo/323/prod_1094_r.htm
  14. Архип Люлька - 100 великих.
  15. Двигатели - Эхо России. Общественно-политический журнал.
  16. Турбовинтовые двигатели и вертолетные ГТД
  17. www.advisers.ru/file/advisers/dvigat.pdf. — «Таким образом, чем больше степень двухконтурности ТРДД, тем меньше скорость истечения газа из выходного устройства и тем выше тяговый коэффициент полезного действия.»  Архивировано из первоисточника 3 февраля 2012. Проверено 15 ноября 2011.
  18. Схемы авиационных ГТД 19. — «дополнительная масса воздуха, поступающая из вентилятора, создает дополнительную тягу, что увеличивает общую тягу двигателя»  Архивировано из первоисточника 3 февраля 2012. Проверено 15 ноября 2011.